viernes

Matemática Serie 23

El ÁLGEBRA ayuda a construir edificios mas fuertes.

Compartir entrada en:


.

Podemos encontrar las raíces de polinomios en las teclas de un piano. Al pulsar una tecla se activa un martillo que golpea una cuerda que vibra a determinada frecuencia (velocidad), que es la que define la nota. Esta frecuencia es un número, y, de hecho, es la raíz de un polinomio que se define a partir de las características de la cuerda. Esto mismo sucede en cualquier instrumento, y a cualquier objeto que vibra.
Cuando un terremoto sacude un edificio, lo hace vibrar; también cuando un avión se encuentra con turbulencias. Además de emitir una nota, se produce un efecto llamado resonancia, que puede llegar a ser destructivo. Así sucedió con el puente de Tacoma Narrows en 1940. Un fuerte viento sopló a la velocidad justa (la frecuencia de resonancia del puente), haciendo que el puente se agitara fuertemente, aunque es posible que no fuera la causa final de su colapso. Actualmente las estructuras están diseñadas para que sus notas de resonancia sean difíciles de reproducir en la naturaleza, por lo que este tipo de fenómenos son muy poco probables. Los ingenieros utilizan, de esta manera, el cálculo de raíces de polinomios.

Otra aplicación muy común es la optimización. Esta técnica matemática permite usar de forma eficiente recursos escasos como el tiempo, la energía o el dinero, siguiendo determinados objetivos. Las compañías la emplean, por ejemplo, para decidir si es mejor gastar más dinero en contratar más empleados, remodelar la oficina, comprar más productos que luego se vayan a vender, o dejarlo en el banco. Para poder establecer la estrategia óptima se resuelven, con ayuda de un ordenador, una serie de ecuaciones que reflejan cuanta inversión y cuanto beneficio se asocia a cada acción. Las estrategias óptimas se corresponden habitualmente con las raíces de las ecuaciones escritas.
-----------------

Actualmente las estructuras están diseñadas para que sus notas de resonancia sean difíciles de reproducir en la naturaleza

Sin embargo, el cálculo de las raíces no es siempre sencillo, y los matemáticos llevan siglos dedicados a este problema. Hay dos resultados clave sobre ello. El primero es el Teorema Fundamental del Álgebra, que establece que todo polinomio de grado n (el mayor de los exponentes de la variable) tiene n raíces, algunas de ellas pueden ser múltiples, en el mundo de los números complejos. De esta manera, sabemos exactamente cuántas raíces debemos buscar. El segundo resultado es el llamado Teorema de Abel, que afirma que no hay una fórmula general, que implique únicamente las operaciones básicas, para obtener las raíces de los polinomios de grado cinco o mayor. Esto significa que en general, a partir de grado cinco, no es posible calcular las raíces de forma exacta mediante una fórmula de este tipo, solo aproximaciones.

En la segunda mitad del siglo XX, el análisis numérico siguió creciendo, y fueron apareciendo diferentes fórmulas para calcular raíces de polinomios. La mayoría se obtenía a partir de viejas ideas, como la de Newton, convenientemente modificadas para poder ser resueltas de forma eficiente con un ordenador. Cada método tiene sus pros y sus contras. Por ejemplo, el método de Frobenius de matrices compañeras da muy buenas aproximaciones pero supone más trabajo de computación que otras técnicas, y la situación empeora cuando crece el grado del polinomio. Matemáticos e ingenieros se dieron cuenta de que podría mejorarse el método utilizando ciertas características de los polinomios. Yo trabajé, junto a otros matemáticos, para proponer un perfeccionamiento que disminuye significativamente el tiempo de cálculo y mejora la precisión, que ha sido reconocido como uno de los mejores métodos para calcular raíces de polinomios por la Sociedad de Matemática Industrial y Aplicada estadounidense.

Gracias a estos avances conseguimos métodos cada vez más sencillos y eficaces para calcular las raíces de los polinomios y, con ellas, entre otras cosas, diseñar mejores edificios y obtener mejores soluciones para la distribución de recursos.


FUENTE: el pais.


Escrito por:Ramón R. Feliciano-Matemática Serie 23


Lic.en Educación Mención Matemáticas, Conocimientos en Diseño Web y Manejo de las TICs.


Síguenos en: Facebook | Twitter |YouTube

Responderemos lo mas rápido posible.