jueves
miércoles
Algunos Tipos de Movimientos.
En Mecánica,
el movimiento es un
cambio de la posición de un cuerpo a lo largo del tiempo respecto de
un sistema de referencia.
El
estudio del movimiento se puede realizar a través de la cinemática o a través
de la dinámica.
Movimiento
rectilíneo: es la trayectoria que describe el móvil
de una línea recta. Algunos tipos notables de movimiento rectilíneo son los
siguientes:
a-) Movimiento rectilíneo uniforme:
cuando la velocidad es constante.
b-) Movimiento rectilíneo uniformemente
acelerado: cuando la aceleración es
constante.
Ejemplos:
1- ) El
rayo láser
2- ) Un auto en línea recta y a velocidad constante
3- ) Las botellas en las fábricas para ser llenadas. También los tarritos en procesos industriales.
4- ) La SOMBRA DE UN PROYECTIL (PUEDE SER UNA PIEDRA O BOLA) A LAS 12 DEL DÍA. →→→→.
2- ) Un auto en línea recta y a velocidad constante
3- ) Las botellas en las fábricas para ser llenadas. También los tarritos en procesos industriales.
4- ) La SOMBRA DE UN PROYECTIL (PUEDE SER UNA PIEDRA O BOLA) A LAS 12 DEL DÍA. →→→→.
Movimiento
curvilíneo: es la trayectoria de forma curva de un móvil
u objeto. Estos pueden ser: Circular, Elíptico, Parabólico
1- ) Circular: Un
movimiento circular es aquel en que la unión de las posiciones de un cuerpo a lo largo del tiempo (trayectoria)
genera una curva en la que todos sus puntos se encuentran a la misma distancia
R de un mismo punto llamado centro.
2-
) Elíptico:
Se refiere a un objeto en movimiento cuya
trayectoria dibuja una elipse. Una elipse es una figura geométrica definida por
el conjunto de puntos cuya suma de distancias a dos puntos dados (focos) es la
misma.
3-)
Parabólico:
Se denomina movimiento parabólico al realizado por un objeto cuya
trayectoria describe una parábola.
Magnitudes
que intervienen en el movimiento
Al hablar de movimientos siempre aparecen dos
magnitudes fundamentales: el espacio y tiempo, y una magnitud derivada que es
la velocidad.
Longitud: metro (m). El metro
es la distancia recorrida por la luz en el vacío en 1/299 792 458 segundos.
Este patrón fue establecido en el año 1983.
Tiempo: segundo (s).
El segundo es la duración de 9 192 631 770 períodos de la radiación
correspondiente a la transición entre los dos niveles hipéricos del estado
fundamental del cesio-133.
Este patrón fue establecido en el año 1967.
Velocidad: es una magnitud
física de carácter vectorial que
expresa el desplazamiento de un objeto por unidad de
tiempo.
Rapidez: es la relación entre la distancia recorrida y el tiempo
empleado en completarla
Usamos v para representar la rapidez, la cual es igual al
cociente entre la distancia (d) recorrida y el tiempo (t) empleado
para hacerlo.
Como corolario, la distancia estará dada por la fórmula:
d=v.t
Según esta, la distancia recorrida por un móvil se obtiene de multiplicar
su rapidez por el tiempo empleado.
A su vez, si se quiere calcular el tiempo empleado en
recorrer cierta distancia usamos
t=d/v
El tiempo está dado por el cociente entre la distancia recorrida y la
rapidez con que se hace.
lunes
Ejercicios del Volumen del cilindro.
1-) Averiguar el volumen de un cilindro con un diámetro de 42cm
y altura de 38,5cm.
2-) Un cilindro tiene
por altura la misma longitud que la circunferencia de la base. Y la altura mide
125.66 cm. Calcular el volumen:
3-) Si
el radio del círculo base del cilindro es 2 cm y la altura es 6 cm, para hallar
el volumen del cilindro primero debemos calcular el área del circulo:
4-)
Encuentre el volumen del cilindro mostrado. Redondee al centímetro cúbico más
cercano.
6-)
Un cilindro tiene de radio de la base 5cm y su altura es el doble del diámetro.
Halla el volumen en m³
7-)
El diámetro de la base de un cilindro mide 8m y la altura es el doble de la
circunferencia de la base. Halla el volumen en m³.
8-)
El radio de la base de un cilindro es 4cm; y la altura es 16cm.Halla el volumen
en m³
Ejercicios del área y el volumen de la esfera.
1-)
Averiguar el área y el volumen de la superficie exterior de un hemisferio hueco
con un radio de 21cm como se muestra a continuación:
2-)
¿Cuál es área el volumen de superficie de la esfera siguiente?
3-) Calcular
el área el volumen de la superficie de una esfera con un diámetro de 24cm como
se muestra a continuación:
4-)
La figura mostrada representa un hemisferio sólido con un radio de 17,5 cm.
Calcular el área total el volumen de la superficie en cm2.
5-)
Calcula la superficie y el volumen de una pelota de 5 cm de radio.
6-)
Calcula la superficie y el volumen de una pelota de radio 10 veces mayor que la
del ejercicio 5.
Ejercicios del área del cilindro.
1-) Dada la siguiente figura, colóquele el nombre a sus partes.
2-) Calcula el área lateral y el área total de un cilindro de 25 cm de alto, y de 15 cm de radio de la base.
2-) Calcula el área lateral y el área total de un cilindro de 25 cm de alto, y de 15 cm de radio de la base.
3-) Calcula
el área lateral y el área total de un cilindro de 19 cm de altura y 7 cm de diámetro
de la base.
4-) Se
necesita llenar de agua un recipiente como el de la figura B, utilizando el
recipiente A, ¿Cuantas veces debe llenarse el recipiente A para lograrlo?
5-) Si en el siguientes cilindro el diámetro y la altura
miden cada uno cuatro centímetros, entonces, ¿Cuánto es el área de la figura sombreada?
6-) En el siguiente cilindro calcula: el área lateral y total.
Ejemplos de tiempo y velocidad ( física).
Para resolver este problema es necesario despejar la ecuación de rapidez para obtener la fórmula que nos permitirá calcular el tiempo transcurrido:
2-) Una mariposa vuela en linea recta hacia el sur con una velocidad de 7 m/s durante 28 s, ¿cuál es la distancia total que recorre la mariposa?
Para resolver este problema es necesario despejar la ecuación de velocidad para obtener la de distancia: