Mostrando las entradas con la etiqueta Algebra. Mostrar todas las entradas
Mostrando las entradas con la etiqueta Algebra. Mostrar todas las entradas

jueves

Matemática Serie 23

Lenguajes Algebraico.

El álgebra es la parte de la matemática que estudia la relación entre números, letras y signos. Por lo tanto, el lenguaje algebraico es aquel que emplea símbolos y letras para representar números. El lenguaje algebraico surgió en la civilización musulmana en el período de AL-Khwarizimi durante la Edad Media. Su función principal es establecer y estructurar un lenguaje que ayude a generalizar las diferentes operaciones que tienen lugar dentro de la aritmética donde solo ocurren los números y sus operaciones aritméticas elementales (+ -x%).


Leer Mas

lunes

Matemática Serie 23

Fracciones algebraicas.

Fracciones algebraicas
Una fracción algebraica es el cociente de dos polinomios y se representa por:
P(x) es el numerador y Q(x) el denominador.
Fracciones algebraicas equivalentes
Dos fracciones algebraicas
son equivalentes, y lo representamos por:
si se verifica que P(x) · S(x) = Q(x) · R(x).
son equivalentes porque:
(x+2) · (x− 2) = x2 − 4
Dada una fracción algebraica, si multiplicamos el numerador y el denominador de dicha fracción por un mismo polinomio distinto de cero, la fracción algebraica resultante es equivalente a la dada.
Simplificación de fracciones algebraicas
Para simplificar una fracción algebraica se divide el numerador y el denominador de la fracción por un polinomio que sea factor común de ambos.
Amplificación de fracciones algebraicas
Para amplificar una fracción algebraica se multiplica el numerador y el denominador de la fracción por un polinomio.
Reducción de fracciones algebraicas a común denominador
Dadas dos fracciones algebraicas, reducirlas a común denominador es encontrar dos fracciones algebraicas equivalentes con el mismo denominador.
Reducir a común denominador las fracciones:

1Descomponemos los denominadores en factores para hallarles el mínimo común múltiplo, que será el común denominador.
x2 − 1 = (x + 1) · (x − 1)
x2 + 3x + 2 = (x +1 ) · (x + 2)
m.c.m. (x2 − 1, x2 + 3x + 2) = (x + 1) · (x − 1) · (x + 2)

2Dividimos el común denominador entre los denominadores de las fracciones dadas y el resultado lo multiplicamos por el numerador correspondiente.
Suma de fracciones algebraicas
La suma de fracciones algebraicas con el mismo denominador es otra fracción algebraica con el mismo denominador y cuyo numerador es la suma de los numeradores.
Sumar las fracciones algebraicas:
Fracciones algebraicas con distinto denominador
En primer lugar se ponen las fracciones algebraicas a común denominador, posteriormente se suman los numeradores.
Sumar las fracciones algebraicas:
Multiplicación de fracciones algebraicas
El producto de dos fracciones algebraicas es otra fracción algebraica donde el numerador es el producto de los numeradores y el denominador es el producto de los denominadores.
Multiplicar las fracciones algebraicas:
División de fracciones algebraicas
El cociente de dos fracciones algebraicas es otra fracción algebraica con numerador el producto del numerador de la primera por el denominador de la segunda, y con denominador el producto del denominador de la primera por el numerador de la segunda.
Dividir las fracciones algebraicas:





Leer Mas
Matemática Serie 23

Factorización de un polinomio.

Factorización de un polinomio
Métodos para factorizar un polinomio
Sacar factor común
Consiste en aplicar la propiedad distributiva.
a · b + a · c + a · d = a (b + c + d)
Descomponer en factores sacando factor común y hallar las raíces
1 x3 + x2 = x2 (x + 1)
La raíces son: x = 0 y x = −1
2 2x4 + 4x2 = 2x2 (x2 + 2)
Sólo tiene una raíz X = 0; ya que el polinomio, x2 + 2, no tiene ningún valor que lo anule; debido a que al estar la x al cuadrado siempre dará un número positivo, por tanto es irreducible.
3 x2 − ax − bx + ab = x (x − a) − b (x − a) = (x − a) · (x − b)
La raíces son x = a y x = b.
Igualdad notable
Diferencia de cuadrados
Una diferencia de cuadrados es igual a suma por diferencia.
a2 − b2 = (a + b) · (a − b)
Descomponer en factores y hallar las raíces
1 x2 − 4 = (x + 2) · (x − 2)
Las raíces son x = −2 y x = 2
2  x4 − 16 = (x2 + 4) · (x2 − 4) = (x + 2) · (x − 2) · (x2 + 4)
Las raíces son x = − 2 y x = 2
Trinomio cuadrado perfecto
Un trinomio cuadrado perfecto es igual a un binomio al cuadrado.
a2 ± 2 a b + b2 = (a ± b)2
Descomponer en factores los trinomio cuadrados perfectos y hallar sus raíces
La raíz es x = −3, y se dice que es una raíz doble.
La raíz es x = 2.
Trinomio de segundo grado
Para descomponer en factores el trinomio de segundo grado P(x) = ax2 + bx + c , se iguala a cero y se resuelve la ecuación de 2º grado. Si las soluciones a la ecuación son x1 y x2, el polinomio descompuesto será:
ax2 + bx + c = a · (x − x1) · (x − x2)
Descomponer en factores los trinomios de segundo grado y hallar sus raíces
Las raíces son x = 3 y x = 2.
Las raíces son x = 3 y x = − 2.
Descomponer en factores los trinomios de cuarto grado de exponentes pares y hallar sus raíces
x4 − 10x2 + 9
x2 = t
x4 − 10x2 + 9 = 0
t2 − 10t + 9 = 0
x4 − 10x2 + 9 = (x + 1) · (x − 1) · (x + 3) · (x − 3)
x4 − 2x2 − 3
x2 = t
t2 − 2t − 3 = 0
x4 − 2x2 + 3 = (x2 + 1) · (x + ) · (x − )

Factorización de un polinomio de grado superior a dos
Utilizamos el teorema del resto y la regla de Ruffini para encontrar las raíces enteras.
Descomposición de un polinomio de grado superior a dos y cálculo de sus raíces
P(x) = 2x4 + x3 − 8x2 − x + 6
1Tomamos los divisores del término independiente: ±1, ±2, ±3.
2Aplicando el teorema del resto sabremos para que valores la división es exacta.
P(1) = 2 · 14 + 13 − 8 · 12 − 1 + 6 = 2 + 1− 8 − 1 + 6 = 0
3Dividimos por Ruffini.
4Por ser la división exacta, D = d · c .
(x − 1) · (2x3 + 3x2 − 5x − 6 )
Una raíz es x = 1.
Continuamos realizando las mismas operaciones al segundo factor.
Volvemos a probar por 1 porque el primer factor podría estar elevado al cuadrado.
P(1) = 2 · 13 + 3 · 12 − 5 · 1 − 6≠ 0
P(−1) = 2 · (− 1)3 + 3 · (− 1)2 − 5 · (− 1) − 6 = −2 + 3 + 5 − 6 = 0
(x −1) · (x +1) · (2x2 +x −6)
Otra raíz es x = −1.
El tercer factor lo podemos encontrar aplicando la ecuación de 2º grado o tal como venimos haciéndolo, aunque tiene el inconveniente de que sólo podemos encontrar raíces enteras.
El 1 lo descartamos y seguimos probando por 1.
P(−1) = 2 · (−1)2 + (−1) − 6 ≠ 0
P(2) = 2 · 22 + 2 − 6 ≠ 0
P(−2) = 2 · (−2)2 + (−2) − 6 = 2 · 4 − 2 − 6 = 0
(x − 1) · (x + 1) · (x + 2) · (2x − 3 )
Sacamos factor común 2 en último binomio y encontramos una raíz racional.
2x − 3 = 2 (x − 3/2)
La factorización del polinomio queda:
P(x) = 2x4 + x3 − 8x2 − x + 6 = 2 (x −1) · (x +1) · (x +2) · (x − 3/2)
Las raíces son : x = 1, x = − 1, x = −2 y x = 3/2
Todas las raíces son racionales
Puede suceder que el polinomio no tenga raíces enteras y sólo tenga raíces racionales.
En este caso tomamos los divisores del término independiente dividido entre los divisores del término con mayor grado, y aplicamos el teorema del resto y la regla de Ruffini.
P(x) = 12x3 + 8x2 − 3x− 2
Probamos por: .
Sacamos factor común 12 en el tercer factor.





Binomio al cuadrado
(a ± b)2 = a2 ± 2 · a · b + b2
(x + 3)2 = x 2 + 2 · x ·3 + 32 = x 2 + 6 x + 9
(2x − 3)2 = (2x)2 − 2 · 2x · 3 + 32 = 4x2 − 12 x + 9
Suma por diferencia
(a + b) · (a − b) = a2 − b2
(2x + 5) · (2x - 5) = (2x)2 − 52 = 4x2 − 25
Binomio al cubo
(a ± b)3 = a3 ± 3 · a2 · b + 3 · a · b2 ± b3
(x + 3)3 = x3 + 3 · x2 · 3 + 3 · x · 32 + 33 =
= x 3 + 9x2 + 27x + 27
(2x − 3)3 = (2x)3 − 3 · (2x)2 ·3 + 3 · 2x · 32 − 33 =
= 8x 3 − 36x2 + 54x − 27
Trinomio al cuadrado
(a + b + c)2 = a2 + b2 + c2 + 2 · a · b + 2 · a · c + 2 · b · c
(x2 − x + 1)2 =
= (x2)2 + (−x)2 + 12 + 2 · x2 · (−x) + 2 x2 · 1 + 2 · (−x) · 1=
= x4 + x2 + 1 − 2x3 + 2x2 − 2x=
= x4− 2x3 + 3x2 − 2x + 1
Suma de cubos
a3 + b3 = (a + b) · (a2 − ab + b2)
8x3 + 27 = (2x + 3) (4x2 − 6x + 9)
Diferencia de cubos
a3 − b3 = (a − b) · (a2 + ab + b2)
8x3 − 27 = (2x − 3) (4x2 + 6x + 9)
Producto de dos binomios que tienen un término común
(x + a) (x + b) = x2 + (a + b) x + ab
(x + 2) (x + 3) =
= x2 + (2 + 3) · x + 2 · 3 =
= x2 + 5x + 6


Leer Mas